Physics Impact

The Fermilab physics program together with the computational facilities at Fermilab have lead to several important high-profile results.

B_c mass prediction

"In an unprecedented feat of computation, particle theorists made the most precise prediction yet of the mass of the 'charm-bottom' particle. Days later, experimentalists dramatically confirmed that prediction", Nature **436** (2005)

AIP Physics News Update: "Most Precise Mass Calculation For Lattice QCD" listed among The Top Physics Stories for 2005

"Mass of the B(c) meson in three-flavor lattice QCD", I. Allison, et al., Phys. Rev. Lett. 94 (2005).

f_{D+} prediction

"It became clear that both groups (CLEO and LQCD) could have substantial results just in time for the Lepton-Photon Symposium in Uppsala at the end of June. Since both communities felt that it was very important for the LQCD result to be a real prediction, they agreed to embargo both of their results until the conference... The two results agree well within the errors of about 8% for each." CERN Courier **45**, 6 (2005).

C. Aubin, et al., Phys. Rev. Lett. **95** (2005) 122002

$\mathbf{D} o \mathbf{K} \ell \nu$

The shape of $f_+(q^2)$ was predicted by LQCD before FOCUS and Belle [hep-ex/0510003] results published.

USQCD physics goals

Measurement	CKM Matrix Element	Hadronic Matrix Element	Expt. Error	Current Lattice Error	Lattice Error 0.5 TF-Yr	Lattice Error 10 TF-Yr
ΔM_{B_d} ($\bar{B}B$ mixing)	$ V_{td} ^2$	$f_{B_d}^2 B_{B_d}$	4%	35%	18%	9%
$\Delta M_{B_s}/\Delta M_{B_d}$	$ V_{ts}/V_{td} ^2$	$f_{B_s}^2 B_{B_s} / f_{B_d}^2 B_{B_d}$	Not yet measured	20%	5%	3%
ϵ ($\bar{K}K$ mixing)	$\operatorname{Im} V_{td}^2$	B_K	2%	20%	10%	5%
$B o inom{ ho}{\pi}l u$	$ V_{ub} ^2$	$\left\langle {\stackrel{\circ}{\pi}} \right (V-A)_{\mu} B\rangle$	25%	Calc. in progress	15%	5–10%
$B o {D^* \choose D} l u$	$ V_{cb} ^2$	$ \mathcal{F}_{B \to \binom{D^*}{D} l \nu} ^2$	2%	Calc. in progress	6%	3%

CDF: 2% measurement; D \emptyset : two-sided limit

Current production runs

project	lattices			
$\overline{f_{D^+}}$ and f_{B_d}	$40^3 imes 96$ and $28^3 imes 96$			
HQET Λ and λ_1	$20^3 imes 64$ and $16^3 imes 48$			
$B o \pi \ell u$	tests $20^3 \times 64$			
$B o D^{(*)} \ell u$	tests $20^3 \times 64$; bulk of next alloc.			
thermodynamics	various; MILC collab.			
$B ext{-}ar{B}$ mixing	starting			
$K ext{-}ar{K}$ mixing	tests DWF; next alloc. period			

Production issuses

- HL decay constant runs uses a workflow framework (perl) originally written for ACPMAPS. Helps to run, monitor and checkpoint restart multiple production streams. Required perl expertise is a barrier to prospective users.
- Postdocs have written a hierarchy of bash scripts to coordinate running of HQET and SL decay projects.
- Scripting overhead to detect, log and respond to exceptions in runs. Restarting not always automatic.
- Some wrappers for file copies, mpirun and testing batch job exit status.
- Production runs almost completely moved to lqcd volatile dcache to store intermediate results.

Production throughput -

- usage dominated by $40^3 \times 96$ quark solves (nodes=64)
- blue: totals, red: fraction with non-zero exit status
- o(8%) of 64 node jobs need restart

Dcache i/o performance

- metrics obtained from production run
- 26 indep. streams of analysis (fills pion cluster)
- dcache copies of 1.77, 4.42 and 7.08 GB files
- average rates per copy reported by dccp
- Iqcd: writes $9\binom{+2}{-3}$ (vol) and $7\binom{+3}{-2}$ (vol \rightarrow pub) MB/s
- pion: vol. $10\binom{+4}{-4}$ (read) and $36\binom{+4}{-5}$ (write) MB/s

I/O for parallel job funnels through a single i/o node.

Bigger lattices will require each node do own i/o.

Example Workflow

Example workflow: 2-pt analysis for processing configuration N

- HL and HH analysis for a single configuration
- analysis of one configuration an independent unit of work
- Directed Acyclic Graph (DAG)
- dependencies arrows: among steps (data)
- decorations: resource requirements (e.g. cpu·hrs, disk space)

Why a Workflow Framework?

As facility capabilities increase, campaigns will consist of many more emarassingly parallel streams of analysis. Useful to have a framework to manage running and competition for resources.

- Help plan/schedule analysis campaigns
- Predict total resource requirements
- Automate execution and monitoring of an analysis campaign
- Coordinate facility-wide resource usage during a campaign — avoid potential resource bottlenecks

Features of a Workflow System

Workflow system will integrate existing and planned components of the standard user environment.

- A workflow language useful for describing an analysis campaign.
- Tools to aid in designing and validating workflow language documents.
- Management (storage & retrieval) of workflow specifications.
- Tools to plan, schedule and run a workflow.

Features Continued . . .

- Tools to monitor work progress and track performance metrics.
- Components capable of detecting and reacting to conditions arising in performance and monitoring data.
- Lifetime management of intermediate data in order to maximize resource utilization (e.g. disk space, network bandwidth, memory, CPU).

SciDAC-II Proposal

Workflow project is part of the LQCD SciDAC-II proposal.

- Xian-He Sun (IIT, guest scientist), L. Piccoli, J. Kowalkowski (liason), J. Simone
- specification for prototype 10/06
- profiling and workflow simulations 12/06